
HVSTO: Efficient Privacy Preserving Hybrid
Storage in Cloud Data Center

Mianxiong Dong∗, He Li†, Kaoru Ota‡, Haojin Zhu§
∗ University of Aizu, Japan

†Huazhong University of Science and Technology, China
‡Muroran Insitute of Technology, Japan
§Shanghai Jiao Tong University, China

Abstract—In cloud data center, shared storage with good
management is a main structure used for the storage of virtual
machines (VM). In this paper, we proposed Hybrid VM storage
(HVSTO), a privacy preserving shared storage system designed
for the virtual machine storage in large-scale cloud data center.
Unlike traditional shared storage, HVSTO adopts a distributed
structure to preserve privacy of virtual machines, which are
a threat in traditional centralized structure. To improve the
performance of I/O latency in this distributed structure, we use a
hybrid system to combine solid state disk and distributed storage.
From the evaluation of our demonstration system, HVSTO
provides a scalable and sufficient throughput for the platform
as a service infrastructure.

I. INTRODUCTION

In cloud data center, virtualization technology brings flex-

ibility and reliability to the cloud service [1] [2]. In Infras-

tructure as a Service (IaaS) and Platform as a Service (PaaS),

since virtual machines (VM) are the main interface to provide

cloud service to users [3], to protect the VM data is essential

to user privacy. In cloud data center, virtualization provides

effective data isolations [4]. Storage encapsulation is the main

method to isolate VM data in logical level. All data of each

VM are encapsulated to one or more disk image files stored

in a storage system [5].

However, it is not always secure for user privacy by this

encapsulation. To support VM management in cloud data

center, people use a shared storage in which all data of VM

are stored in a uniform storage space. To implement this

shared storage, existed works adopt centralized structure that

all physical nodes connect to a centralized storage unit like

NAS or other storage system [6]. Even it is convenient for

management and sufficient performance with some high-end

storage devices, from some captured nodes with the access

privilege, centralized structure easily due to a data leakage of

all VM in the whole cloud data center [7].

To prevent security issues of the centralized structure, access

control is used that only the limited parts of the cloud data

center have right to access the centralized storage [8]. It can

prevent some malicious accesses from a compromised node

while the access from physical nodes or the administrator is

allowed. In the worst case, even it is hard to happen, the

centralized storage system is compromised to leak VM data.

In this paper, we proposed HVSTO, a shared storage with

a distributed structure can preserve privacy even some storage

units are compromised. A distributed structure is easy to

spread security risks to multiple storage unit. Meanwhile, we

design a block mapping for each VM, with which the data of

each VM is distributed in each storage unit. A compromised

storage unit can only get a part of data on each VM. To

preserve privacy, HVSTO splits these data to small blocks

and sparsely stored in each storage unit. It is difficult to get

information by using parts of data blocks in one or several

storage unit.
As the traditional address mapping is not suitable for the

distributed storage structure, we design a new tree-like map-

ping structure in HVSTO. HVSO also splits the mapping data

to small blocks and stores this blocks to the distributed storage

units sparsely. With this distribution, compromised nodes are

hard to get the full metadata of each VM image file, without

which it is hard to reorganize the blocks to data. Meanwhile,

with this mapping structure, a VM image is organized by a

version tree with extraordinary performance snapshot.
With the distributed structure which provides enough con-

currency for virtual machines, the latency is sometimes d-

ifficult to prevent since the block mapping and network

transferring. In HVSTO, with a small block distribution, it is

hard to ignore the I/O latency from the distributed structure.

Traditional method to decrease this latency is used a high-end

network. In HVSTO, we adopt a low-cost method that adopts a

hybrid structure to combine the local solid state disk (SSD) and

the distributed structure. Although the maximum bandwidth

of the SSD device is limited, the high IOPS performance is

enough for supporting multiple VM concurrently access. In

HVSTO, local SSD stores the metadata, shared image data

and parts of branch data of each VM above it. From the

evaluation, the concurrency performance is improved by this

hybrid design.
The main contributions of this paper are summarized as

follows.

• First, we proposed HVSTO, a shared storage system with

a distributed structure to preserve privacy even parts of

storage units are compromised.

• Second, based on this distributed structure, we design a

new mapping structure for better privacy preserving and

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

978-1-4799-3088-3/14/$31.00 ©2014 IEEE 529

high efficiency.

• Last, with the small block distribution, we design a hybrid

structure that combines the local SSD and distributed

storage units to provide better storage performance.

The rest of this paper is summarized as follows. We discuss

the threat model and design themes in Section II. The details

of design and implementation are discussed in Section III. In

Section IV, our evaluation is divided in two parts: first we

evaluate the overload on a single node and the concurrency

performance of a small cluster. The last sections offer some

concluding thoughts and future works.

II. PROBLEM STATEMENT

A. The System and Threat Model

Fig. 1. The threat model of the VM storage in cloud data center.

As shown in Fig. 1, we consider storage in a cloud data

center network involving four different entities: the user, who

considers their data are stored in VM; the virtual machine

(VM), who sends or receives storage request to the virtual

storage device; the virtual machine monitor (VMM), who

manages the virtual storage devices and transferring storage

I/O request to the center storage system as I/O request to the

image files; center storage system, in which all VM data are

stored.

In general case, each virtual machine has a virtual storage

device for I/O request in cloud data center. The virtual storage

device is encapsulated to a virtual disk image that is stored

in the storage system. When the user does something to their

operation system due to some I/O requests to the filesystem

in VM, VM sends the I/O requests to the virtual storage

device. VMM receives these requests from VM through the

virtual storage device and forward the request to the network

storage interface which connects the storage system. The

storage system processes these requests to the physical storage

devices.

In this model, a potential threat is all VM data are stored

in a centralized storage system logically in which all data

are accessible. If some compromised nodes in the cloud data

center get the access permission to this storage system, it is not

difficult to get all VM image files. Considering the limitation

of the hardware performance, VM image files are hard to

store in the storage system with encryption. As a result, this

malicious access can easily analyze the detail of VM image

file, which leads to a leakage of user privacy.

B. Design Goals

We define three different design themes as following to

reduce the leakage risk of user privacy without decreasing the

performance

1) Disributed Shared Storage: As mentioned before, cen-

tralized storage is the main defect to the threat. Even using

access control or other defense methods, it has an obligation to

open the access permission to some nodes like virtualization

servers to execute VM and the manage nodes who control the

behavior of VM like migration, snapshot or other essential

operations. It is hard to negative the probable threat that a node

with the access privilege to the storage system is compromised.

A feasible method to vanish this threat is using a different

storage structure. As a result, we use a distributed structure to

store VM images in HVSTO.

Although dividing VM data to multiple storage units re-

duces the leaked data in the worst case, it harm to the

scalability of resource management. It is hard to schedule

storage resources except moving whole VM image data from

one storage unit to another. In HVSTO, we design a shared

space to provide a same storage space to each virtualization

server while VM data are sliced to small blocks and distributed

sparsely in multiple storage nodes. Therefore, it becomes

almost impossible to get the VM data though a pile of small

discrete blocks on one or several compromised storage nodes.

2) Efficient Mapping: Conventional virtual machines stor-

age solutions like VMDK [9] or QCOW [10] were using a

”chain” mapping to realize benefits of virtual disks. In this

”chain”, each version of the original disk file will store the

increment and a point to the former version means an I/O

request to source disk data on the N version will jump N
times. It is not an obvious problem with existed high-end

storage system which provides adequate performance includes

low latency access. In HVSTO, this version control is not

suited to the distributed storage that the access between storage

node and virtualization server is slower than high-end storage

system.

Meanwhile, actually, the ”chain” mapping is based on the

sequential storage which is easy to locate the rest of the data

with one address of the block in an image. If the compromised

node gets one or more block addresses, the attacker can get

more VM data easily. In HVSTO, instead the ”chain” mapping,

we design an efficient direct index metadata for mapping a

virtual block to a physical block. Based on these structures,

with the generally disk image reconsidered on a map of non-

sequential blocks, using parts of mapped addresses is hard to

get other VM data.

3) Hybrid structure: We design a hybrid storage structure

combined by a local solid-state disk equipped with every

node of virtualization cluster and the distributed storage. As

mentioned before, since serial access module of the general

mechanical disks, their limited concurrency performance could

not support enough virtual machines. Storage service devices

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

530

increase could remit the pressure of concurrency access from

virtual machines in PaaS. Another efficient method is using

the local storage devices equipped in virtualization nodes.

In most virtualization implementations, it is necessary to

equip enough capacity storage device for installation some re-

quired components like a virtual machine monitor(VMM) [11].

We combine these devices with the shared distributed storage

for increasing the data I/O throughput. Consider throughput

from tens of virtual machines in a single virtualization node,

we choose the solid state disk that a flash based storage device

without any mechanistic structure. With the characteristics of

SSD, the random I/O throughput is thousands of times than

the traditional hard disk. This feature meets the demand of

storage virtualization [12].

C. Security Analysis of Distribution

To better understand the better security of the distribution

structure, we analyze the possibility of user data leakage in a

small case.

Firstly, we introduce a small case in cloud data center for

our analysis. There a small cloud data center with M VMs

and H private data existed in these VMs. To a private data di,
we use li to denote the data size.

Then we define the pi to denote the possibility of the

leakage of data i. Therefore, we get the possibility pi when

the storage system is compromised in a centralized storage

system. Oblivious, this possibility is 100% since the li size of

data are obtained by scan the whole storage system.

After that, we adopt our distributed design of storage

system. In this storage system, all image files are sliced to

small blocks and distributed to N storage nodes. We define s
to denote the size of each block. Considering a simple random

distribution, we get the possibility of a block stored in one of

n specific storage node is n
N .

Therefore, to get a private data i, the malicious application

needs to get ni blocks to recovery the content of these data.

The definition of ni is shown in (1).

ni =

{
li
s if fi ≥ s

1 if li < s
(1)

Considering the distribution of each block is a separate

event, as shown as in (2), we easily get the possibility pi
that the private data i are leaked when n storage nodes are

compromised.

pi =

{
(n
N)

li
s if fi ≥ s

n
N if li < s

(2)

Therefore, we get the total size P of leakage data when n
storage nodes are compromised as shown as in 3.

P =
H∑
i=1

pili =
H∑
i=1

(
n

N
)ni li (3)

To evaluate the security of our system, we take a simulation

based on several traces of real world user data. We describe

the detail of this simulation in Section IV.

III. DESIGN AND IMPLEMENTATION

A. System Architecture

Fig. 2. Hivo consist of the storage appliance in virtualization servers and
the shared distributed storage(SDS)

As shown in Fig. 2., HVSTO consist of shared distributed

storage (SDS) and local storage appliance. SDS is a group of

commercial computers equipped generally storage devices and

the virtual block interface daemon. Local storage appliance is

a toolkit for redirecting the I/O requests from virtual machines

to the SDS and management of local SSD cache.

HVSTO provides a virtual disk interface for each VM

executing upon the virtualization servers accessing the storage

transparently. HVSTO uses a block index structure instead

of the traditional file abstraction to manage each virtual disk

image. As the general file storage, to access data in HVSTO,

it is necessary to inquiry the metadata stored in the SDS.

Metadata and data are both managed by the local storage

appliance.

The local appliance on the host VM gets all I/O requests

from virtual machines then transfer these requests through

general TCP/IP networks to the storage nodes in SDS or access

the local SSD if the destination data of these requests were

cached. Since the isolation of virtualization, these procedure

is agnostic to the operation system in each VM.

The virtual block interface daemon accepts the network

package from the local storage appliances and processes these

requests to final storage devices. For the design of a distributed

structure, in virtual block interface daemon, we design three

steps of processing I/O requests from virtualization servers.

First, the interface daemon calculate the destination nodes of

the request data block. Second, the interface daemon transfer

each request to the destination nodes. Last, daemon process

requests to the blocks contained in the local node.

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

531

B. Meta-data

Fig. 3. The Meta-data Structure and Snapshot Procedure of HVSTO

In some newer design, a block direct index of virtual disks

was used for a better performance in virtual machines storages.

By this method, each block in each version of virtual disks

is mapped to the physical block in an index data structure.

It is avoided that the linear increased delay of processing I/O

request in a deep version tree. Since the benefit on performance

of the block direct index, we choose a similar way in HVSTO.

In a procedure of sending each request of a virtual block to

the mapped physical one, we found the time overhead occur in

the seeking disk for index data both direct index or c̈hainı̈ndex

and repeatedly reading disk when using the letter is the reason

of linear performance decrease. But after disk seeking, the

data read time is unremarkable. So we adopted a B+tree like

structure from database systems to index the virtual block to

physical.

The nodes in tree are in various sizes as mentioned in Fig. 3.

We take a three depth B+tree for mapping virtual block to the

space in distributed storage. Based on this B+tree, for the disk

image snapshot, we implement a copy-on-write mechanism.

When a snapshot is taken, a new image root is created and a

read-only link will be set to leaf of the previous root. When

virtual machine generates a new block, HVSTO will construct

a writeable link and the non-leaf nodes to this block. The

other link of new non-leaf nodes will be set read-only to the

corresponding child in the previous B+tree structure. And the

newest image root will be set writeable and the previous tree

will be set read-only in the snapshot log. With this efficient

snapshot, in HVSTO, we design a rewrite avoidance in I/O

processing. When the VM wants to change the data in its

image, HVSTO takes a snapshot of the current image and

generate a new version to store the new data. The rewrite

avoidance significantly simplifies the processing of the rewrite

request. We also design and implement a garbage collection

to remove the automatically generated version when low load

periods.

C. Data in SSD

HVSTO has three different types of blocks, metadata,

system image and activity data. Since the limited space of local

storage, SSD stored a part of data of virtual machines on the

virtualization machine. We divide the local SSD storage space

to three distinguished parts for storing this different data and

implement different replacement strategies. In the SSD device,

we set 25% storage space for caching the metadata, 50% for

system image and the rest for active data.

With rewrite avoidance, in the period of system service, the

meta-data size will increase since more and more snapshot

of VM file systems. We modify the Least Recently Used

(LRU) cache replacement strategy to the metadata in two

stages. First, scan the latest version of disk images used by

all upon virtual machines and label these blocks cache index

as protected. Second, remove the last element unprotected of

the LRU queue. Since we set each image index should be

accessed by a single VM strictly, the cached metadata update

only takes place in write-back.

To release the concurrent access pressure during some

determinable periods like booting VM, local SSD caches parts

of source VM images. The contents in these images are

only changed by the administrator in system upgrading or

exceptional cases. However, with various VM existed in the

whole cloud, the storage space in SSD is limited to store all

source image. When some VMs migrate in or boot up, it is

needed to updata this part of SSD space. We adopt LIRS cache

[13] to manage this space to guarantee as many essential data

stored in local as possible during the peak load.

The active data space caches the read/write data of active

VM. These VMs have their read/write cache space. For the

read cache, we implement prefetch and replacement strategy

refereed by the Linux kernel file cache with a larger prefetch

window. HVSTO provides a 100MB write cache in SSD for

each active VM. As mentioned before to implement rewrite

avoidance, HVSTO update the metadata more frequently. To

reduce this update, new version is created until the write cache

full or VM is saved/migrated.

IV. EVALUATION

As we described in the past sections, HVSTO has some

special features supports VM storage in cloud environment. To

confirm these features, we evaluate HVSTO in two different

perspective.

A. Data Privacy Simulation

In this section, we firstly evaluate the security efficiency

of HVSTO by simulation with some trace of real word user

data. Then we take some tests to evaluate the performance of

HVSTO. We trace user files in

My Documents of Windows 7 of 10 student computers in our

laboratory and record the file name and size (About 20.86GB

totally). We consider there 100 storage nodes of the small

cloud data center and the block size is 4KB and 8KB. Then

we put these records to calculate the leaked data ratio these

10 users if they are using cloud services instead their personal

computers. We calculate the leakage ratio from 1 to 25 nodes

are compromised.

As shown in Fig. 4, we find that the leakage ratio of user

data after storage system is intruded is very small with the

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

532

Fig. 4. The user data leakage ratio when 1 to 25 are compromised.

design of HVSTO. When one storage node is compromised

in HVSTO with 4KB block size, the leakage ratio is only

0.0033% or it is possible to leak about 65.6KB user data.

While the block size becomes 8KB, the possible leakage ratio

is 0.0074%. If more nodes are compromised, the possilbe leak-

age ratio becomes higher. When 1
4 nodes are compromised,

it is possible to leak about 2.45MB user data, which means

leakage is more than 0.11% with 4KB block size while the

possible leakage ratio becomes 0.25% with 8KB block size.

Even though there are a few of data could be leaked when

some storage nodes are compromised, HVSTO is much better

than the single storage system which has 100% leakage ratio

after it is compromised.

B. Testing Configuration

To measure the efficiency of HVSTO, we test HVSTO in

two different persecutive. We design a micro benchmark to

find the effects brought by each design and implementation.

All test is taken in a 7 nodes cluster with commercial blade

servers. In this cluster, each node equips two 1.6Ghz Intel

Xeon E5310 quad core processors, 4 GByte of RAM, an

Intel 40GB X25-V SSD, a 500GB HDD and an Intel e1000

GbE network interface cards. All servers are connected by

a TP-LINK TL-SF1016D switch. As the comparison system,

we choose one node with NFS protocol [14] to provide

the centralized storage service. To the micro benchmark, we

choose two nodes that one node as the virtualization server

and the other as the storage node to test the I/O latency. To

the overall performance test, all 7 nodes are used. In all test,

the software environment is the same. We install XCP 1.6 with

CentOS 6.3 on each node and use Fedora 15 without GUI as

the OS of guest VM.

C. Micro Benchmark

In this persecutive, based on this mapping structure and

hybrid design, we test the I/O latency brought by distributed

design with mapping structure and hybrid design. Then, we

measure the performance degradation of the distributed struc-

ture than general local storage devices.

Fig. 5. The read latency after snapshot of HVSTO and general QCOW
format image

1) I/O Latency: As mentioned in Section II, with the

distributed structure, the I/O latency in HVSTO is bigger

than general storage system. We adopt a Hybrid structure

to optimize this latency. Meanwhile, in our design themes,

we describe the mapping structure in HVSTO provides better

snapshot performance to support some advance features for

the virtualized storage.

Therefore, we measure the I/O latency of HVSTO with

version control. We describe the test steps as following.

Initially, we choose a VM image and take a snapshot to this

VM image in HVSTO. We set this snapshot as a version of

VM image. Then, we run a VM with this version and test the

latency by recording the average I/O latency of reading same

2MB data in 5 times. After that, we take snapshot to this

version to generate a new version and repeat the same test. In

latency test, we repeat the test steps 10 times and get the test

result from 10 versions of VM image. As a comparison, we

take the same test on NFS. We put the same image in NFS

and take snapshot on this image by QCOW.

From the result in Fig. 5, in the source image, with the

overload of HVSTO, the latency is bigger than NFS. In the

image after 2 times snapshot, the latency of HVSTO is near the

QCOW. With the cached data in local SSD, we find the latency

is decreased in the image after 3 times snapshot. With more

snapshot, the latency of QCOW snapshot is linear increased

and HVSTO is almost stable value. From the result of latency

test comparing with the NFS, we consider the I/O latency

increased by HVSTO is not obvious. In addition, with the

mapping structure and hybrid design, to the original QCOW,

HVSTO performs better I/O latency of the image after more

3 times snapshot to the source image.

2) Throughput: Since our implementation of virtual block

mapping, there is a performance degradation from the original

network filesystem. We test the throughput to find out the

overload by the HVSTO design. We choose bonnie++ [15]

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

533

as the mainly benchmark application to measure the general

sequential I/O performance. We run a VM in HVSTO and

excute bonnie++ in this VM. As a comparison to find the

performance degradation by virtualization and HVSTO, we

run the test in a physical node with native NFS and a VM

with NFS. As shown in Fig. 6, the NFSGuest means VM

image is stored in NFS and the NFSHost means native NFS.
From the test result, compared with the performance of

native NFS, we find HVSTO has a degradation at 6% for

write throughput performance and 7% for read throughput

while the VM with NFS has a degradation of 3% for write

and 4% for read. With the filesystem cache, HVSTO has a

better result that the degradation is 6% for write throughput

and 5% for read. To the VM with NFS, the degradation is 3%

and 4%. Since the result with cache is better to measure the

performance of storage system in practical usage, we consider

that the overload to a VM in HVSTO design is not obvious

with the original virtualized disk image.

Fig. 6. The Bonnie++ Output results on different storage devices

V. CONCLUSION

To solve the privacy threat brought by centralized storage

structure in the cloud data center, we propose HVSTO, a

distributed storage system for virtual machines. With a spec-

ified design of mapping structure, HVSTO provides better

privacy protection and efficient snapshot than original VM

image structure. To solve the performance degradation of

distributed structure, we adopt a hybrid structure that keep

more VM data in local SSD storage to reduce the network

interactions. We implement three types of cache in this local

SSD storage and the evaluation indicate this cache increase

the performance of HVSTO. Considering HVSTO is just a

demonstration implement, we will continue to improve the

design of HVSTO include better block distribution algorithm,

strict access control to virtualization server and scheduling

storage resource dynamically.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant

Number 25880002, JSPS A3 Foresight Program.

REFERENCES

[1] M. Winter, “Data center consolidation: A step towards infrastructure
clouds,” in Proceedings of the 1st International Conference on Cloud
Computing, ser. CloudCom ’09. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 190–199. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-10665-1 17

[2] N. Carr, The Big Switch: Rewiring the World, from Edison to Google.
W.W. Norton & Company, 2009.

[3] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology (NIST), Gaithersburg,
MD, Tech. Rep. 800-145, September 2011. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: Towards a cloud definition,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008. [Online].
Available: http://doi.acm.org/10.1145/1496091.1496100

[5] B. Sotomayor, R. S. Montero, I. Llorente, and I. Foster, “Virtual infras-
tructure management in private and hybrid clouds,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[6] S. B. Vaghani, “Virtual machine file system,” SIGOPS Oper. Syst.
Rev., vol. 44, no. 4, pp. 57–70, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1899928.1899935

[7] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a service: Privacy-
aware data storage and processing in cloud computing architectures,” in
Dependable, Autonomic and Secure Computing, 2009. DASC ’09. Eighth
IEEE International Conference on, 2009, pp. 711–716.

[8] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing
security of virtual machine images in a cloud environment,” in
Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
ser. CCSW ’09. New York, NY, USA: ACM, 2009, pp. 91–96.
[Online]. Available: http://doi.acm.org/10.1145/1655008.1655021

[9] V. Inc. Virtual disk format. http://www.vmware.com/interfaces/vmdk.
html.

[10] M. McLoughlin. The qcow2 image format. http://people.gnome.org/
∼markmc/qcow-image-format.html.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems
principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
164–177.

[12] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance,” in USENIX
2008 Annual Technical Conference on Annual Technical Conference, ser.
ATC’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 57–70.

[13] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” in
Proceedings of the 2002 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’02. New York, NY, USA: ACM, 2002, pp. 31–42. [Online]. Available:
http://doi.acm.org/10.1145/511334.511340

[14] B. Callaghan, B. Pawlowski, and P. Staubach, “RFC 1813: NFS version
3 protocol specification,” Jun. 1995.

[15] R. Coker. (2001) Bonnie++. www.coker.com.au/bonnie++/.

2014 IEEE INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and Privacy in Big Data

534

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

